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Abstract. This paper describes a specialized interface to PVS called TAME (Timed Automata Modeling
Environment) which provides automated support for proving properties of I/O automata. A major goal of TAME
is to allow a software developer to use PVS to specify and prove properties of an I/O automaton efficiently and
without first becoming a PVS expert. To accomplish this goal, TAME provides a template that the user completes
to specify an I/O automaton and a set of proof steps natural for humans to use for proving properties of automata.
Each proof step is implemented by a PVS strategy and possibly some auxiliary theories that support that strategy.
We have used the results of two recent formal methods studies as a basis for two case studies to evaluate TAME. In
the first formal methods study, Romijn used I/O automata to specify and verify memory and remote procedure call
components of a concurrent system. In the second formal methods study, Devillers et al. specified a tree identify
protocol (TIP), part of the IEEE 1394 bus protocol, and provided hand proofs of TIP properties. Devillers also used
PVS to specify TIP and to check proofs of TIP properties. In our first case study, the third author, a new TAME
user with no previous PVS experience, used TAME to create PVS specifications of the I/O automata formulated
by Romijn and Devillers et al. and to check their hand proofs. In our second case study, the TAME approach to
verification was compared with an alternate approach by Devillers which uses PVS directly.
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1. Introduction

A number of authors (Miller and Srivas, 1995; Butler et al., 1995; Crow and Di Vito, 1996;
Butler, 1996) have found that the PVS specification language (Owre et al., 1999) and similar
strongly typed, higher-order logic languages are well suited to the formalization of system
specifications. All report that practitioners, such as hardware and software designers and
requirements analysts, can understand appropriately structured PVS specifications. Further,
Miller states that engineers at Collins Aviation learned to use PVS to prove properties of a
microprocessor design (Miller and Srivas, 1995).

Yet, significant barriers exist to widespread industrial use of mechanical provers such as
PVS in software practice. In fact, Miller and Srivas (1995), Butler et al. (1995), and Crow
and Di Vito (1996, 1998) all concede that in general practitioners are unwilling or unable
to create formal specifications or to perform analysis of the specifications using the PVS
proof checker. Further, Butler et al. (1995) observe that one barrier to transferring formal
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methods technology to industry is that “Training the industrial experts to use the formal
techniques, especially to develop skill in verification, [is costly].”

The high cost of training practitioners is not the sole barrier to more general use of PVS
(and other theorem provers) to formalize and prove properties of specifications. First, the
user must construct an appropriate representation of the system of interest in the language of
the theorem prover. Formal proofs of system properties will be influenced by the details of
this representation, the manner in which properties are formalized, and the set of reasoning
steps available in the theorem prover. The effort required is therefore substantial even for
those who have mastered the prover. Moreover, direct use of a general-purpose theorem
prover can encourage users to adapt both specifications and proofs to the needs of the prover
rather than to the standard conventions of the problem domain. As a result, practitioners
often find it difficult to relate the formal representation and formal proofs of properties to
their intuitive notions of the system behavior and its properties. We agree with Butler et al.
(1995) who argue that:

[T]he formal methods researchers must be willing to adapt their methods to the problem
domain rather than fight to change the existing methodologies to conform to their needs.

TAME (Timed Automata Modeling Environment) (Archer and Heitmeyer, 1996, 1997b;
Archer et al., 1998, 2000; Archer, 2000) is a specialized interface to PVS designed to reduce
the barriers to more general use of theorem proving for verifying automata models. With
TAME, users can create PVS specifications of three different automata models: Lynch-
Vaandrager (LV) timed automata (Lynch and Vaandrager, 1996), I/O automata (Lynch and
Tuttle, 1989), and the automata model that underlies specifications in the SCR (Software
Cost Reduction) tabular notation (Heitmeyer et al., 1998). Users can also formulate proper-
ties of automata in standard logic and prove these properties mechanically using reasoning
“natural” to humans. A major goal of TAME is to provide explicit support for specifying
and proving properties of automata. To make it easy to create PVS specifications from au-
tomaton descriptions, TAME provides templates for specifying the behavior of automata.
To simplify the development of mechanized proofs, TAME provides a set of PVS strategies
supporting the kinds of proof steps normally found in hand proofs of invariant properties
of automata. In particular, TAME is designed to support straightforward construction of a
mechanized proof of an invariant property from a high-level hand proof that expresses a do-
main expert’s explanation of why the property holds. Further, TAME is designed to produce
saved proofs that can be easily translated into natural language proofs (i.e., explanations).

In two recent formal methods studies, two example systems were specified and verified
using the I/O automata model. In the first study, Romijn specified and verified a solution
to the RPC-Memory (Remote Procedure Call) problem, a problem posed by Broy and
Lamport at the 1994 Dagstuhl Seminar on Reactive Systems (Romijn, 1996). In the second
study, Devillers et al. specified and verified an I/O automaton called TIP (Tree Identify
Protocol), the leader election algorithm of the IEEE 1394 multimedia bus protocol. These
studies, together with a volunteer TAME user with no previous PVS experience (the third
author), gave us the opportunity to evaluate TAME. Both Romijn (1996) and Devillers et al.
(2000) provide specifications of I/O automata and their properties. In addition, they provide
hand proofs (Romijn, 1996; Devillers, 1997) of most of the properties in Romijn (1996)
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and Devillers et al. (2000) in varying degrees of detail. Thus, the third author had several
example specifications and proofs to which she could apply TAME. In addition, Devillers
et al. (2000) describe the PVS specification and proofs of the I/O automaton TIP and provide
a pointer to the specification and proofs on the web. This gave us the opportunity to compare
the use of PVS through TAME with the direct use of PVS by Devillers et al.

Section 2 of this paper briefly reviews I/O automata and then provides an overview of the
TIP and RPC-Memory examples. Section 3 provides a high-level description of TAME, its
templates, and its strategies. Section 4 compares a direct PVS approach to specification and
proof for TIP (Devillers et al., 2000) to the TAME approach to the same problem. Although
this study of TIP was done after the study of TIP discussed in Section 5, we describe it
first because it clarifies the difference between using PVS through TAME and using PVS
directly. Section 5 describes the experience of the third author in applying TAME to TIP
and the RPC-Memory Problem (Romijn, 1996; Devillers et al., 2000; Devillers, 1997),
with particular attention to (1) the time and effort required and (2) the adequacy of the
TAME proof steps for mechanizing the proofs of invariants. Section 6 discusses the results
described in Sections 4 and 5 and some improvements in TAME that resulted from the case
study described in Section 5. Section 6 also provides an example of the automatic translation
of a TAME proof into a natural language explanation. Finally, Section 7 describes related
work, and Section 8 presents our conclusions.

2. The I/O automata model: Two examples

The I/O automata model is a very general model for (possibly infinite) discrete state tran-
sition systems. Lynch and Tuttle (1989) define an I/O automaton as a set of states with a
subset of initial states, a set of actions, and a transition relation. A state is an assignment
of values to state variables. The transition relation is usually described in terms of the “pre-
condition” and “effect” of each action. The actions are partitioned into input, output, and
internal actions to control the way I/O automata can be composed: an output action of one
automaton may be composed with compatible input actions of one or more other automata;
no other composition of actions is permitted. No composition of automata occurs in the
TIP example, but composition is used in the RPC-Memory example to connect a remote
procedure call component with a memory component.

The TIP study (Devillers et al., 2000) produced a specification and proofs for the leader
election algorithm, the core of the tree identify phase of the physical layer of the IEEE 1394
bus protocol. The tree identify protocol is applied to a special kind of graph, namely, an
undirected digraph (if the graph contains an edge e, then it also contains its reverse edge
reverse(e)) without self-loops. Moreover, the graph topology must be tree-like, meaning
that for each pair of vertices v, w in the graph, there is a unique sequence of vertices
v0, v1, . . . , vn such that (1) v0 = v; (2) vn = w; (3) for all 0 ≤ i ≤ n − 1, (vi , vi+1) ∈
Edges; and (4) no vertex occurs more than once in the sequence. The algorithm identifies
a spanning tree of the digraph. As the algorithm proceeds, particular links (directed edges)
between adjacent nodes are added to a directed spanning tree. At any point during execution
of the algorithm, those edges that have been added to the spanning tree are known as child
edges. The algorithm terminates when the spanning tree is complete; its root is then the
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“leader”. The goal of the analysis by Devillers et al. (2000) is to establish the property:
“For an arbitrary tree topology, exactly one leader is elected.” This property is proved in
Devillers (1997) with the aid of 17 invariants.

Appendix A contains the specification of TIP in terms of an I/O automaton (Devillers
et al., 2000). The first two lines of this specification declare the four internal actions and
the single output action (there are no input actions). The next five lines declare the state
variables and define the initial state. All five state variables of TIP have a complex (function)
type rather than a simple type. For example, the declaration that init has type V → Bool
says that the state variable init is a function from V to Bool. The types V and E, which
represent the vertices and edges of the graph, were defined outside of the specification. The
type Bool∗ represents lists of booleans with associated operations hd, tl, empty, and append.
The remainder of the specification specifies the parameters, preconditions, and effects of
the five actions. Appendix B contains the TAME representation of the TIP specification.
Appendix C provides a sample of the 17 TIP invariants from Devillers et al. (2000) and
their representations in TAME. Section 5 describes how the third author constructed the
TAME translation for TIP.

The RPC-Memory problem concerns the interaction of a memory component and a remote
procedure call (RPC) component of a distributed system. Romijn’s solution (Romijn, 1996)
contains approximately twenty I/O automata and hand proofs of many kinds of properties—
relative safety, liveness, deadlock-freeness, properties of quiescent states, implementation
(based on weak simulation or weak refinement properties), and state invariants. Since the
third author’s goal was to automate these proofs, she focused on three automata for which
invariants were proved: Memory∗, which models one version of the memory; MemoryImp,
which models the combination of a “reliable” version of the memory with the RPC; and Imp,
which models an implementation of a lossy version of the RPC, with timing information
added.1

Nearly all of the hand proofs of the state invariants for both the TIP and RPC-Memory
examples are in the Lamport style (Lamport, 1993). The TAME specifications and proofs
for both examples can be found at the URL http://chacs.nrl.navy.mil/projects/tame.

3. TAME

In proving properties of automata models, model checking (Clarke et al., 1986) is often
viewed as more practical and easier to use than theorem proving. While clearly an important
technique for detecting certain classes of errors in specifications, model checking has some
limitations when compared to theorem proving. For example, it is often claimed that model
checking is automatic and that it requires little expertise from the user. However, due to the
state explosion problem, the user usually model checks an abstract model of a given system
rather than the complete system specification. Finding the appropriate abstract model often
relies on user ingenuity and creativity. Even when abstraction is used, the state explosion
problem may prevent the model checker from running to completion. Hence, model checking
may be unable to establish the correctness of a property. Moreover, when system models
contain parameters, model checking can only check correctness for specific (usually small),
rather than arbitrary, parameter values. The protocols from Romijn (1996) and Devillers et al.
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(2000) contain parameters as well as another feature—complex data types. Both features
are problematic for a model checker. For the verification of these and similar examples,
theorem proving is more effective.

However, direct use of a mechanical theorem prover to establish a selected property, even
a simple property, typically requires significant and tedious human effort. See, for example,
the PVS proof in figure 5 in Section 4. To reduce the human effort needed to establish
properties of automata using theorem proving, TAME provides a special theorem prover
interface (Archer and Heitmeyer, 1996, 1997b; Archer et al., 1998, 2000; Archer, 2000).
This interface consists of a set of templates for specifying automata, a set of standard PVS
theories, and a set of standard proof steps, with each proof step implemented as a PVS
strategy. A PVS theory is an object, sometimes parameterized, containing a set of related
definitions and theorems. A PVS strategy is a pattern of inference steps that can adapt to
different circumstances by using conditionals and backtracking.

Several considerations led to our decision to base TAME on PVS rather than a different
theorem prover:

– PVS has a relatively user-friendly interface and supports a standard logic that allows
users to formalize properties to be proved in a natural way.

– The PVS decision procedures handle many of the low-level details in proofs efficiently.
– PVS saves rerunnable proof scripts and thus provides the basis for creating human read-

able proofs.
– PVS has a rich type system.

The rich type system supported by PVS has one drawback: it makes type checking un-
decidable. As a result, the type checker may generate type correctness conditions (TCCs)
that must be proved before any proofs of properties are considered valid. TCCs may also
occur as extra subgoals in PVS proofs. Unprovable TCCs may be the result of speci-
fication errors; these can be eliminated by correcting the specification. Any remaining
TCCs can often be proved by PVS’s automatic theorem proving strategy GRIND. The
user occasionally must supply more proof detail. For the examples in this paper, exam-
ple elements of certain sets had to be supplied to prove some of the TCCs generated
by PVS.

Below, we describe TAME’s templates, theories, and strategies, and how they are related.
We also discuss the major goals which have guided the design of the TAME strategies.

3.1. TAME templates

As stated in Section 1, TAME currently provides templates for three classes of automata:
LV timed automata, I/O automata, and SCR automata. Each template provides a standard
structure for defining an automaton. Because LV timed automata are essentially I/O au-
tomata with time added, the template originally designed for specifying LV timed automata
was easily adapted to specifying I/O automata by assigning standard default definitions
to time-related quantities. To define an automaton of either of these two classes, the user
provides the information shown in figure 1.
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Figure 1. Information in the TAME template.

As illustrated in Section 5, specifications of I/O automata in the style used by Devillers
et al. (2000) and Romijn (1996) can easily be translated into TAME specifications. Although
TAME does not provide automated support for composing automata or reasoning directly
about an automaton defined as a composition, when an I/O automaton is defined as the
composition of two or more other I/O automata, the user can combine the information ex-
tracted from the individual automaton descriptions to produce a single TAME specification
in a (usually) straightforward way. For an indication of how the composition procedure for
I/O automata specifications may sometimes require human insight, see the discussion in
Section 5 of composition in the RPC-Memory Problem (Romijn, 1996).

3.2. TAME proof steps

TAME’s standard strategies are designed to support mechanical reasoning about automata
using proof steps that mimic human proof steps. These strategies are based on type and
name conventions enforced by the templates, the TAME standard theories, and additional
special definitions, auxiliary local theories, and local strategies that can be generated from a
particular template instantiation. For example, lemmas in a standard theory called machine
support the (automaton) induction strategy AUTO INDUCT (see figure 2). The auxiliary
local theories contain lemmas which support the rewriting and forward chaining needed in
“obvious” reasoning about a particular application.

The TAME user strategies implement proof steps typically used in hand proofs of au-
tomaton properties. Hand proofs of invariant properties typically contain only proof steps
from a limited set. Figure 2 lists the most common proof steps used in invariant proofs and
identifies the TAME strategies that implement them. TAME strategies also exist for several
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Figure 2. Common steps for invariant proofs and their TAME strategies.2

steps needed less frequently than those listed in figure 2. For more information about the
TAME user strategies, their effects, and how they are implemented, see Archer (2000).

3.3. Major goals of the TAME proof steps

One major goal of the TAME proof steps is to save the user from the tedium typical of
proofs done directly in PVS. One technique for achieving this, used in almost all of the
TAME strategies, is to incorporate repeated patterns of steps into high-level steps. For
example, the TAME strategy AUTO INDUCT incorporates several repeated patterns into
high-level steps. In some cases, a repeated pattern becomes a single proof step: for example,
given the appropriate arguments, the TAME strategy APPLY INV LEMMA introduces
and instantiates the desired invariant lemma, expands the invariant, and discharges the
reachability condition that is the hypothesis of the lemma.

A second technique for reducing tedium is used in the TAME strategy TRY SIMP.
TRY SIMP automates certain inferences which are “obvious” to humans but which, in
PVS, require detailed user guidance together with knowledge of the behavior of PVS and
some of its more obscure proof steps. Several such inferences concern the PVS DATATYPE
construct. For example, if con and des are a corresponding constructor-destructor pair in a
datatype A, it is obvious to a human that con(des(a))= awhenever a is a “con” value of A
because by definition des(a) returns the element x such that a= con(x). To establish this
needed fact in a proof, the PVS user must apply the PVS step APPLY-EXTENSIONALITY.
Establishing other simple facts about data types in PVS can also be tedious, requiring the
PVS steps REPLACE and CASE to do explicit substitution and judicious case splitting.
The auxiliary local theories that can be generated from a template instantiation provide
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the conditional rewrite rules and lemmas used by TRY SIMP to make such inferences
automatic when TRY SIMP is invoked.

Easterbrook and Callahan (1997) report that they abandoned early experiments with PVS
to prove properties of SCR specifications because “when a proof failed, it took too long to
discover the problem.” A second major goal of the TAME proof steps is to give the user
better feedback both after a proof or proof attempt and while a proof is being constructed.

To achieve better feedback after a full or partial proof has been completed, the TAME
proof steps are designed to make saved PVS proofs understandable without executing them
in PVS. Saved TAME proofs have a clear structure: the meanings of the proof branches are
indicated by comments automatically generated by TAME. The meaning of an individual
TAME proof step can be inferred from its name and its arguments. In verbose mode, TAME
prints extended comments showing the exact facts introduced, so that the reader of a proof
need not look up particular lemmas, preconditions, etc. (See Sections 4 and 6 for example
TAME proofs.) Thus, a complete proof can be inspected to see if it succeeded for the
expected reasons; examination of a partial proof can pinpoint where in the argument the
proof failed or is incomplete.

TAME provides users improved feedback from PVS during a proof by attaching labels to
formulae that indicate their origin, and hence their significance. For example, the strategy
AUTO INDUCT labels formulae in subgoals corresponding to induction cases according
to whether they come from the precondition, inductive hypothesis, or inductive conclusion,
or express the fact that the prestate (or poststate) of an induction step is reachable. When
the TAME step SUPPOSE is applied to an assertion argument P, the current subgoal is
split into two subgoals, one with the hypothesis P labeled Suppose and the other with the
hypothesis not(P) labeled Suppose not. Facts introduced with APPLY INV LEMMA
or APPLY LEMMA are given a label lemma <lemma-name> derived from the name of
the lemma. In later subgoals, the descendants of a labeled formula retain the labels of their
parent; the inherited labels thus indicate the reason for the presence of new formulae. The
ability to label formulae, a recently added feature of PVS, is important in the execution of,
as well as the feedback from, the TAME strategies.

4. Applying TAME to TIP

Devillers et al. (2000) describe the direct use of PVS to mechanize the proofs of properties
of the automaton TIP. Below, we contrast the TAME approach with the direct use of PVS,
drawing from the third author’s results in applying TAME to TIP. For brevity, we refer to
“TAME” specifications and proofs and “PVS” specifications and proofs.

4.1. Comparing proofs of invariants

The TIP property of interest—for an arbitrary tree topology, exactly one leader is elected—
is established by proving two simpler properties: “at most one leader is elected” and “at
least one leader is elected”. Fourteen invariants, I1 through I14, are used to prove that at
most one leader is elected (invariant I15). Two additional invariants, I16 and I17, are used in
the proof that at least one leader is elected.
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The most dramatic difference between the PVS approach of Devillers et al. (2000) and the
TAME approach lies in the proofs of these invariants. The TAME proofs are much shorter,
and the significance of proof branches and individual proof steps is much clearer. Moreover,
the TAME proofs correspond in a clear way to the hand proofs in Devillers (1997). In fact,
the TAME proofs for those TIP invariants for which hand proofs were available were done
by referring to the hand proofs. For an example, see the discussion of the proof of Invariant
I4 in Section 6. This method differs from the method used by the authors of Devillers
et al. (2000), whose PVS proofs followed the subgoal-driven proof style directly supported
by PVS. In this style, the next PVS step to use is chosen by looking at the current proof
subgoal. These authors found the hand proofs of invariants of little use in guiding the
invariant proofs in PVS and hence did not try to follow the reasoning used in the hand
proofs.

Proofs in general have a natural tree structure. Branching occurs when the proof breaks
into cases or when extra proof obligations are created by a proof step. When a user creates
a proof interactively in PVS, PVS saves an executable script of the proof, recording both
the proof steps invoked by the user and the branching structure of the proof. In the example
TAME and PVS proofs in this paper, the proof steps supplied by the user appear in Roman
font, while the names of TAME strategies invoked by the user appear in bold. The parts of
the proof scripts created by PVS appear in italics. The italic numbers in quotes represent
the addresses of the proof branches in the tree and hence show the tree structure. The
TAME proofs also include comments, in italics and preceded by semicolons, automatically
generated by the TAME strategies.

The resemblance of TAME proofs to hand proofs is illustrated by the natural language
proof of TIP Invariant I5 in figure 3. This proof was obtained by hand translating the TAME

Figure 3. Natural language proof of Invariant I5.
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Figure 4. TAME proof of Invariant I5. The TAME strategies supplied by the user are in bold, and the parts
supplied by PVS are in italics. The PVS parts include comments automatically generated by the TAME strategies;
these comments are preceded by semicolons.

proof of I5 in figure 4 in a straightforward way. Although the hand proof from which the
TAME proof of I5 was derived is a Lamport-style proof rather than a natural language
proof, TAME proofs can also be (and have been) derived from natural language proofs
providing the level of detail of the proof in figure 3.

Figure 5 presents the PVS proof of TIP Invariant I5 developed by Devillers et al. (2000).
As the translation in figure 3 of the TAME proof of Invariant I5 illustrates, a TAME proof
can be understood by referring only to the specification of the automaton and its invariants;
the user need not rerun the TAME proof through the PVS proof checker. PVS proofs in
general do not have this property. For example, one must step through the proof in figure 5
with the PVS proof checker to determine the contributions of many of the steps, such as
(PROP), (SKOSIMP*), (HIDE −1), (INST?), (REPLACE −2 :HIDE? T), and (LIFT-IF)
in the first column.

The PVS encoding of state invariant lemmas is slightly different from the TAME encod-
ing. In the PVS encoding, most invariants—those proved by induction—have two associated
lemmas: the first lemma states that the invariant holds in start states and is preserved by
transitions, and the second (proved trivially from the first) states that the invariant holds for
all reachable states. When induction is not required in the proof—i.e., when the invariant
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Figure 5. PVS proof of Invariant I5 by Devillers et al. The proof steps supplied by the user are in Roman font,
and the parts supplied by PVS e.g. tree addresses and PROPAX are in italics.

follows from other invariants—only the second lemma is needed. The TAME encoding of
every state invariant lemma is equivalent to the second PVS lemma. For proofs requiring
induction, the strategy AUTO INDUCT first reduces this lemma to the equivalent of the
first PVS lemma before performing many of the standard initial proof steps. Thus, the TAME
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proofs by induction of invariants correspond to the PVS proofs of the first associated lemma
in the PVS encoding.

The difference between corresponding TAME and PVS proofs is illustrated by the TAME
and PVS proofs for I5 in figures 4 and 5. Both proofs were created interactively with the
PVS prover. The user supplied all of the information in the proofs except the parts in italics.
An obvious difference between the proofs is the number of proof steps: the TAME proof
requires the user to supply only 14 steps, while the PVS proof requires the user to supply
112 steps. The two proofs also have different structures. The PVS proof tree (see figure 5)
has two branches at the top level, with the second dividing into five parts. The first branch
corresponds to the base case of the induction proof, while the five parts into which the
second branch divides correspond to the five induction cases—one for each of the five
actions of TIP (see Appendix A). In contrast, the TAME proof tree (see figure 4) has three
top level branches.

Although the two proofs have different structures, some relationships can be found. The
PVS proof clearly has repeating patterns; the TAME strategies take advantage of such
repeating patterns to produce higher-level proof steps. One pattern involves the application
of an invariant lemma. The three arrows at the bottom of the middle column of the PVS
proof in figure 5 mark the three steps that apply Invariant I2 to the current state (before
the action) and the skolem constant for the edge e of Invariant I5. (A skolem constant is a
generic instance of a universally quantified variable.) In the TAME proof in figure 4, this is
accomplished by the proof step (APPLY INV LEMMA “2” “e theorem”) in the second
proof branch (also marked with an arrow). Most of the repeating patterns are handled by
either AUTO INDUCT or TRY SIMP. For example, the base case and last two induction
cases, whose proofs are “obvious” to a human, are done automatically by AUTO INDUCT.
Hence the three top-level branches in the TAME proof, which represent the three nontrivial
action cases, correspond to the branches “2.1”, “2.2”, and “2.3” of the PVS proof (but not
in that order).

Figure 6 lists the number of steps and relative execution times of the TAME proofs and the
PVS proofs for all 17 TIP invariants. The two numbers in parentheses correspond to slightly
altered versions of invariants used in the PVS proofs. Invariant I15 did not have a PVS proof.
The second, improved set of TAME statistics for Invariant I17 are for an improved TAME
proof created by using as hints the commands to expand invariants in the PVS proof. These
commands indicated which invariants were used, but not the case in which they were used
and not always the arguments to which they were applied. Thus, the TAME proof could not
be directly derived from the PVS proof.

As figure 6 shows, the lengths of the TAME proofs of invariants I1 through I14 are on
the average more than five times shorter than the corresponding PVS proofs. Because high-
level strategies often use some trial-and-error, the proof execution times in the TIP example
average about twice as long for the TAME proofs as for their corresponding PVS proofs
(the maximum ratio—for the proof of the three invariants I6, I7, and I8 combined—was
24 seconds for TAME vs 9 seconds for PVS). However, the relative simplicity and clarity
of the TAME proofs strongly suggests that the human time needed to construct the proofs
with TAME is considerably shorter than that needed to construct proofs with the direct PVS
approach of Devillers et al. (2000).
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Figure 6. Statistics for TAME vs PVS proofs. Execution times are for PVS 2.3 on an UltraSPARC-II.

4.2. Comparing specifications

As expected of two independent encodings of a problem, the PVS and TAME specifica-
tions have rather different structures. The PVS specification of the automaton TIP involves
a large set of automaton-specific theories with a complex import structure having several
(around nine) levels. Moreover, the organization of the import structure is at least partly
problem-specific. Thus, how one would use the same methodology to specify a different I/O
automaton in PVS is not obvious. In contrast, the TAME specification of TIP is essentially a
single automaton-specific theory that imports instantiations of a small collection of generic
theories. Only one of these generic theories—the theory states, which defines the state
type states by combining the automaton-specific “basic” state type defined in the TAME
template with a standard part associated with time values—involves the automaton defini-
tion; the others are used in theorem proving support. Hence, unlike the PVS specification,
the TAME specification of the automaton involves almost no layering of definitions. As a
result, the TAME specification is more easily grasped as a whole, and its correspondence
to the original I/O automaton description is easier to understand. There are additional,
automaton-specific theories associated with the TAME specification that can be derived
in a standard, automatable way from the automaton specification. These theories supply
lemmas to the generic TAME strategies.

The PVS and TAME specifications of TIP also differ in the way they capture the transitions
of the automaton. In the PVS specification, each transition is described using the combined
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information from the precondition and effect of each action. In TAME, the preconditions
and effects of actions are defined separately. In a few instances, some information from the
precondition is needed as a guard in the definition of the effect for the definition to pass type
checking. Experience with many examples has shown that in practice, this rarely happens.
When possible, separating the precondition and effect of an action provides an advantage
in creating understandable induction proofs: in the induction step for each action, one can
first reason about the effect of the action and then determine whether or not the precondition
is also needed in the justification. Thus, it allows one to determine whether a specification
property might be affected when a precondition is changed.

4.3. Beyond invariants: Simulation and refinement

Because PVS lacks support for defining a general automaton type and for passing theory
parameters to theories, completely general definitions of simulation and the closely related
notion of refinement (as defined in (Lynch and Vaandrager, 1995)) are awkward to express in
PVS. For this reason, TAME does not yet include specialized support for proving simulations
or refinements. However, the PVS specification of TIP does include a definition of the
refinement relation in the most convenient general form that can currently be provided with
PVS. The definition makes use of a theory that expects as parameters a type of actions and
a type of states, and defines an automaton type limited by these parameters. In addition, the
PVS proofs for TIP include a proof that TIP is a refinement of another automaton called
SPEC. In this respect, the PVS specification and proofs have an advantage over the TAME
specification and proofs. Theories of the form supporting the definition of refinement in the
PVS specification can almost certainly be adapted for use with a new TAME “refinement”
template. Rather than use this approach, however, a future version of TAME will use PVS
support for theory parameters to theories (to be provided in a future version of PVS (Lincoln,
1998)) to provide generic definitions of simulation and refinement with associated proof
strategies.

5. Experience of a new TAME user

This section describes the experience of the third author, who had no previous experience
with TAME or PVS, in applying TAME to the examples described in Section 2. The third
author first applied TAME to the examples from Romijn’s solution to the RPC-Memory
Problem (Romijn, 1996), and then to TIP and its invariants (Devillers et al., 2000; Devillers,
1997). For the RPC-Memory example, this required specifying the three I/O automata
Memory*, MemoryImp, and Imp and proving 24 associated invariants. For TIP, it required
using TAME to specify the single automaton and to check the proofs of the 15 invariants for
which hand proofs were supplied. No hand proofs were supplied for the two additional TIP
invariants; these were later proved by the first author using TAME. Below, we first illustrate
the specification support provided by TAME by describing how the third author completed
the TAME template using the TIP specification in Appendix A. We then discuss the time
she required to apply TAME to the examples, special problems she encountered and solved,



USING TAME TO PROVE INVARIANTS 215

the extent to which the TAME strategies were sufficient for mechanizing the proofs, and
some errors in the specifications and proofs she discovered during the mechanization.

5.1. Specifying TIP in TAME

The form of the TIP specification in Appendix A was used for all of the I/O automata
studied by the third author. Appendix B shows the TAME template instantiation derived for
TIP. The third author was able to instantiate the TAME template for each I/O automaton
specification in a largely straightforward way as follows. The definitions of the actions of
the I/O automaton provide the names and argument types needed for their TAME declara-
tions, preconditions and effects. Thus, for the TIP action CHILDREN KNOWN, she added
the constructor children known(childV:Vertices) to the actions datatype, and ap-
propriate children known(v) cases to the definitions of enabled specific and trans,
which respectively describe the preconditions and effects of actions. The definitions of the
state variables and their types in the I/O automaton specification provide the information
needed to define the type of the basic state as well as any needed auxiliary type definitions
in the TAME specification. Thus, the declaration init : V → Bool in the TIP specification
becomes the component init:[Vertices->Bool] in the definition of the basic state type
MMTstates in TAME. The initial state information for the I/O automaton is translated into
the initial state predicate start of the TAME specification. Because the state variables
all have function type, the third author used LAMBDA expressions (i.e., expressions with
function values) to express their initial values in the basic component of start. Finally,
any constants and predicates relating constants defined for the I/O automaton can be repre-
sented in the TAME specification using constant declarations and the axiom const facts.
Because there were no predicates relating constants connected with the TIP specification,
the axiom const facts retains its default value true. PVS declarations of the types and
certain function constants such as source and target used in the TIP specification are
given at the beginning of the TAME specification. Instead of defining the list functions and
constants hd, tail, empty, and append used in the TIP specification, the third author chose
to use PVS’s built-in Lisp versions, i.e., car, cdr, null, and cons.

5.2. Time required

Figure 7 summarizes the time required by the third author to apply TAME to the RPC and
TIP examples. She needed approximately a week to read and understand earlier TAME
specifications. These specifications include auxiliary theories, which are derived from a
template instantiation and currently must be generated by hand. In addition, she needed
about a day to learn how to use TAME to obtain a proof.

Once this initial learning period was complete, specifying Memory* in TAME and
creating its auxiliary theories required about two days, and the proofs of its three invariants,
plus a fourth auxiliary invariant, required only a few hours (see figure 7). Some of this time
was used to discover the need for, and the formulation of, the auxiliary invariant. As shown
in figure 7, specifying MemoryImp in TAME required only a few days, whereas proving
its 12 invariants required about ten days. The time required to prove these 12 invariants
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Figure 7. Time required to apply TAME to RPC and TIP.

was longer for a combination of reasons. First, the proofs of these invariants were more
complex than the proofs of the Memory* invariants. Because the proof of one invariant was
only loosely sketched, some time was required to determine all of the facts, including an
additional invariant lemma, required in its proof. Trying to understand the scopes of the
quantifiers in one of the invariants led to a weaker initial formulation of the invariant that
was insufficient for the proofs of later invariants, and this had to be discovered and rectified.
Finally, the third author encountered some situations in which the TAME strategies had
to be supplemented by special knowledge and the direct use of PVS. Once appropriate
improvements were made to TAME (see Section 6.3), she was able to quickly complete the
proofs. After her experience with Memory* and MemoryImp, specifying Imp and proving
its seven invariants took only three days, and specifying TIP and proving its 15 invariants
took only five days.

5.3. Special problems

While translating I/O automata specifications into the TAME template is largely straight-
forward, creativity was needed for some aspects of the translation. These aspects usually
concerned type definitions. For example, the specification of MemoryImp required the com-
position of several I/O automata specifications into a single TAME specification, thus re-
quiring that the output actions of certain automata be combined with input actions of others.
For two of the six combined actions, creativity was required in defining the action parameter
types to make an output action and an input action compatible. In addition, several state
variable and action parameter types in the RPC-Memory automaton had complex subtype
relationships. The third author’s original definitions of these relationships in TAME led to
several unprovable TCCs (type correctness conditions generated by the PVS type checker).
One approach to making the TCCs provable is to include axioms describing the subtype
relationships in the specification. Instead, the third author defined the types as appropriate
subtypes of a PVS datatype. Doing this permits the TCCs to be proved automatically in
PVS and avoids the possible introduction of inconsistent axioms.

Both Imp and TIP have a step whose definition uses a for construct to simultaneously
update a set of variables whose indices satisfy a certain predicate. Some ingenuity was
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required to solve the problem of representing for in TAME, since PVS does not have such
a construct. The third author’s solution was to use the PVS LAMBDA construct to represent
each use of for by a function from variables to their values in the new state.

In addition to the information required in the TAME template, auxiliary information is
sometimes needed. For the RPC-Memory automata, a few auxiliary functions and predicates
defined in the original I/O automata specifications were also included in the TAME speci-
fications. For TIP, a few auxiliary results about data structures were also required. A small
set of lemmas about the relationship between edges and their reverse edges was needed to
mechanize steps in hand proofs whose justification in Devillers (1997) was “math”. These
were simple enough to prove using GRIND, PVS’s general automatic proof step.3 In addi-
tion, a subset of the theory of tree-structured digraphs was needed in the proof of Invariant
I15. Rather than using the full theory developed by Devillers et al., the third author simply
determined the essential fact needed about such digraphs—that they are connected—and
included it as an axiom. Using this axiom, she proved several auxiliary invariants needed
in the proof of I15.

5.4. Sufficiency of the TAME strategies

Once improvements to the TAME strategies (due to feedback from the third author) were
complete, the strategies listed in figure 2 were almost sufficient to obtain all of the proofs for
the RPC-Memory example. APPLY IND HYP and APPLY LEMMA were not needed.
In a few places, new TAME strategies (INST IN and SKOLEM IN, which are described
in Section 6.3) and the PVS steps EXPAND and INST were used.

The proofs of the TIP invariants used all of the strategies in figure 2, together with
INST IN, SKOLEM IN, EXPAND, and INST; in addition, the PVS step SPLIT was used
to separate threads in the combined proofs of several lemmas, and two additional TAME
steps, COMPUTE POSTSTATE and DIRECT INDUCTION were required. The step
COMPUTE POSTSTATE was needed to introduce facts about the poststate required in
a proof in which it was natural to refer to the poststate in a supposition introduced with
SUPPOSE. The proof of one auxiliary invariant lemma for TIP introduced by the third
author required induction over the natural numbers, but not over the reachable states of TIP.
She mechanized this proof using variants of the PVS SKOLEM command, PVS’s EXPAND,
INDUCT, and INST commands, and TAME’s APPLY INV LEMMA strategy. The step
DIRECT INDUCTION was developed to prove invariants whose proof requires mathe-
matical induction followed by direct (non-induction) proofs of the branches. With the aid
of DIRECT INDUCTION, the proof can be mechanized using PVS’s EXPAND, together
with the TAME strategies APPLY INV LEMMA, SKOLEM IN, and APPLY IND HYP
(used to apply the mathematical induction hypothesis). Although TIP was the first TAME
application requiring DIRECT INDUCTION, this strategy has since proved useful in the
verification of a multicast stream authentication protocol (Archer, 2002).

5.5. Specification and proof errors discovered

The specifications and proofs of both the RPC-Memory and TIP examples were very care-
fully done. Thus, the third author uncovered only a few errors. Specifying the RPC-Memory
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automata in TAME and applying the PVS type checker exposed a few cases of incomplete-
ness and inconsistency in the specifications. For example, the intended types of certain
constants were unclear, and there was a type inconsistency in the definition and use of one
function. No specification errors were found in the TIP example, which is not surprising,
since the specification and invariants had already been checked in PVS. But the PVS proofs
for TIP were not derived from the hand proofs, so although the TIP invariants had been
checked, their hand proofs had not been checked. Using TAME, the third author discov-
ered a few cases of incorrect inferences or justifications in both the hand proofs for TIP
and the RPC-Memory proofs. She was able to correct all of these problems in the TAME
proofs, usually in a very straightforward way, and in one case by identifying and proving an
auxiliary invariant. Thus, like Rudnicki and Trybulec (1996), she found that Lamport-style
proofs, though very structured and detailed, are still informal and as a result may contain
incorrect or missing details. Her results led to corrections by Romijn and Devillers et al. in
both the specifications and proofs in Romijn (1996) and Devillers (1997).

6. Discussion

This section presents several observations resulting from our case studies. First, as noted in
Section 4, TAME proofs are readily constructed from hand proofs that give sufficient detail.
A hand proof that indicates which facts were used on which proof branches and which
subcases need to be considered usually provides sufficient detail; details of inferences
drawn from the facts are normally not required. In previous applications (e.g. (Archer and
Heitmeyer, 1996, 1997b)), the hand proofs mechanized with TAME were English language
proofs. As indicated in Section 2, the majority of the proofs mechanized by the third author
using TAME were Lamport-style proofs. These proved to be as straightforward as English
language proofs to mechanize in TAME. Section 6.1 gives an example of the correspondence
between a Lamport-style proof and the TAME proof derived from it. Second, as noted in
Section 4, TAME proofs are intended to be understandable without reference to the PVS
proof checker. In Section 6.2, we describe how TAME proofs can actually be interpreted as
English language proofs, using the TAME proof from Section 6.1 as an example. Finally,
several improvements were made to TAME as a result of the third author’s experience.
Section 6.3 discusses these improvements and some issues they raise.

6.1. Constructing TAME proofs

The proof in figure 8 (provided to the reader as an aid) describes in English the complete
TAME proof (see figure 9) of TIP Invariant I4. As an illustration of how a TAME proof
can be obtained from a Lamport-style proof, figure 9 shows the correspondence between
the TAME steps and the relevant steps from a Lamport-style proof of Invariant I4. These
relevant steps are shown in figure 10, which contains the single branch of the hand proof
that TAME found to be nontrivial; the remainder of the Lamport-style proof was done
automatically by TAME.

To understand the relationship between the two kinds of proofs, we can compare the details
of the proofs of I4 in figures 10 and 9. In the Lamport-style proof (figure 10), the values s and
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Figure 8. English translation of TAME proof of I4.

t represent the prestate and poststate in the induction step, and the values f , g, and v′ are,
respectively, the skolem constants for the quantified variables e, f , and v in I4, which TAME
automatically names e theorem, f theorem, and v theorem. The action C KNOWN(v)
in the Lamport proof corresponds to the action children known(childV action) in
the TAME proof; the name childV action is constructed automatically by TAME from the
name of the formal parameter childV of children known. We added annotations (see the
right-hand column of figure 9) to the TAME proof to show, for each of its steps or branches,
the step of the Lamport proof containing a corresponding inference or justification. For
example, the appeal “by IH” to the inductive hypothesis at step <3.1> in the Lamport-style
proof is handled automatically by TAME’s AUTO INDUCT strategy since, for this proof,
the correct instantiation of the variables in the inductive hypothesis is the skolem constants.
The only steps the TAME user must supply, besides TRY SIMP, are the SUPPOSE for
the case distinction at step <3.2.2> and the APPLY SPECIFIC PRECOND and INST
corresponding to application of the precondition to f and g at step <3.2.3.1>. Checking
in TAME that f and g are of type to(v) at step <3.2.3.1> is handled by proving the TCCs
generated by PVS as the result of the instantiation step INST—this is accomplished by
the proof steps TRY SIMP at “1.2” and “1.3” in the TAME proof. Introducing the effect
of the action and setting up Invariant I4 in the poststate as a proof goal are both handled
automatically in the TAME proof by AUTO INDUCT, and appeals to previous proof steps
are handled automatically in the TAME proof by the final TRY SIMP.
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Figure 9. Complete TAME proof (verbose) of I4.

Figure 10. Nontrivial branch of Lamport-style proof of I4.
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6.2. Explaining TAME proofs

Because the meanings of TAME proof steps are essentially independent of the proof state
current at the time they are executed by the PVS proof checker, TAME proofs can be
understood from their saved scripts by referring to the original specification and by knowing
the conventions TAME uses for skolemization and instantiation. Thus, given the TAME
proof in figure 9, it is fairly straightforward to derive the equivalent English language proof
in figure 8. Knowledge of TAME’s conventions about skolemization is used in specializing
the action parameter childV to childV action, and s, e, f, and v in the theorem to
prestate, e theorem, f theorem, and v theorem. One convention about instantiation
is used in the INST command in the TAME proof: a precondition in the form of a conjunction
is broken down into “ part 1”, “ part 2”, and so on, in order. A second convention about
instantiation is reflected in the English translation in figure 3 of the APPLY INV LEMMA
step in the TAME proof in figure 4: unless a state argument is given, the invariant lemma is
applied to the state prestate. One additional question that arises in interpreting the TAME
proof in figure 9 is why the INST step in the proof results in three subgoals instead of one.
When extra subgoals from an INST occur, PVS has generated one or more TCCs as extra
proof branches, requiring the user to show that values used in the instantiation have the
correct types.

Aside from the problem of identifying TCCs, the derivation of an English language proof
from a TAME proof is straightforward enough to be automated, and hence we have recently
implemented a prototype translator of saved TAME proofs. Applying the prototype transla-
tor to the TAME proof in figure 9 yields the translation in figure 11. Note that the TAME proof
in figure 9 is a verbose TAME proof, in contrast to the non-verbose TAME proof in figure 4.
Thus, details such as the actual fact introduced by APPLY SPECIFIC PRECOND in
figure 9 could be incorporated into the English version (although the prototype translator
does not yet do this). Had the proof in figure 4 been verbose, the actual fact introduced by
APPLY INV LEMMA would have been displayed in the TAME proof (as well as the facts
introduced by each of the three uses of APPLY SPECIFIC PRECOND). An alternative to

Figure 11. Automated translation of the TAME proof in figure 9.
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translating TAME proofs from their saved scripts to obtain an English language version is to
create an English language version simultaneously with the TAME version. Implementing
this technique would allow even more detail to be incorporated in the English version, if
desired, and would better facilitate interpreting extra TCC subgoals in English.

6.3. Improvements made to TAME

Several improvements were made to the template, the strategies, and the supporting theories
of TAME as the result of feedback from the third author. The first improvement generalizes
the template. Improvements to the strategies have made TAME more user-friendly by reduc-
ing the amount of low-level reasoning associated with certain proof steps. Improvements
to the supporting theories extend the scope of the high-level reasoning supported in TAME.
We discuss these improvements below, along with some issues they raise.

6.3.1. Improving the template. The base case of induction proofs corresponding to the
start states is usually trivial to prove. The strategy AUTO INDUCT is designed to prove the
base case automatically, when possible. Although none of the TAME templates enforce any
condition on the form of the start state predicate start, the automatic proof of the base case
by AUTO INDUCT works best if start(s) is expressed as an equality s = <start-
state>, where <start-state> is a record value. In previous applications of TAME, each
automaton had a single start state, and thus the convention was that <start-state> was
an explicit record giving the initial values of all state variables.

In the RPC-Memory example, the third author encountered an automaton in which the
start state was not unique: initial values were given for only some of the basic state variables.
She therefore developed a new template convention for the start state, in which <start-
state> is a record with its time-related components assigned the standard initial values and
itsbasic component (representing the basic state variables) assigned its “old” value updated
with values for those variables whose initial values are specified. This is easily done using
the PVS construct WITH for updating records and functions and has the effect of leaving
the non-updated variables of the basic state unspecified, as desired. Moreover, the strategy
AUTO INDUCT works just as well for proving base cases with the new conventional form
for start(s) as it did with the old one.

6.3.2. Improving the strategies. As noted in Section 5, the third author had difficulty trans-
lating a few of the steps from hand proofs into TAME. One such step was the application
of an invariant lemma to the poststate of a transition in an induction step. The default used
by the TAME step APPLY INV LEMMA is to apply the lemma to prestate; applying
the lemma to a different state requires the state in question to be passed as an explicit argu-
ment. TAME previously represented the poststate as trans(<action>,prestate), where
<action> is the action of the induction step, and maintained among the hypotheses the
fact that trans(<action>,prestate) is reachable, to facilitate application of invariant
lemmas to the poststate. However, this representation of the poststate complicated applying
an invariant lemma. Not only did the user have to supply trans(<action>,prestate)
as an argument to APPLY INV LEMMA, where <action> itself could be an expression
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with parameters, but after doing this, the user had to explicitly expand the transition func-
tion trans. The third author’s difficulties inspired improvements to AUTO INDUCT and
APPLY INV LEMMA that hide this complexity from the user. The term
trans(<action>,prestate) is now represented simply as poststate, and to apply
an invariant lemma to the poststate, the user simply applies APPLY INV LEMMA to the
argument poststate and any other arguments to the lemma.

As noted in Archer and Heitmeyer (1997a) the inability of the user to instantiate or
skolemize with respect to embedded quantifiers in PVS sometimes makes it difficult to
follow the structure of a hand proof using PVS. The third author encountered this problem
in some proofs of the RPC-Memory example. To address the problem, two new strategies,
called INST IN and SKOLEM IN, were added to TAME to approximate internal instan-
tiation and skolemization. These strategies perform automated simplification in an attempt
to handle the non-quantified parts of a formula, and then use the standard PVS proof steps
INST and SKOLEM. Although some wasteful proof branching can result (this happened
with one RPC-Memory lemma), in many cases, this approach handles embedded quantifiers
efficiently.

6.3.3. Improving the supporting theories. The state variables used in I/O automata spec-
ifications do not always have simple types. For example, some automata from the RPC-
Memory example use state variables that must be represented as “datatypes” using the PVS
DATATYPE construct. As noted in Section 3, TAME supports “obvious” reasoning about
datatypes using auxiliary theories generated from a template instantiation. Previous to the
third author’s use of TAME, these auxiliary theories contained only lemmas to support
reasoning about the datatype actions. Because of the additional datatypes used in the
RPC-Memory automata, the auxiliary theories now include lemmas for all datatypes in a
template instantiation.

In the specification of the automaton TIP from Devillers et al. (2000) (see Appendix A),
the type of the state variable mq(e), where e is an edge, is defined to be Bool*, that is, a list
of Booleans. Several of the TIP invariant lemmas involving mq(e) require reasoning about
lengths of lists. Because PVS has a built-in type list[T], where T is a type parameter, it
is reasonable to add auxiliary lemmas to support reasoning about lengths of lists. Figure 12
shows the set of lemmas used as rewrite rules for lists in TAME. Those rules with an asterisk
were actually applied by TAME in proving the TIP invariants. The PVS proof in figure 5
contains several instances of the PVS command ‘(EXPAND “length”)’; these mark places

Figure 12. Rewrite rules for lists used by TAME.
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where simple reasoning about length is occurring. With the rules in figure 12, the TAME
user does not need to guide PVS through this reasoning.

While one might argue that rewrite rules for lists should be standard in TAME because
list[T] is a standard type in PVS, there are many examples in which state variables have
other complex types, as we discovered in applying TAME to some of the invariant lemmas
of Fekete et al. (1997). For reasons of proof efficiency, the number of rewrite rules that
are always active should be limited to those that are relevant. Thus, a practical approach
for handling “obvious” reasoning about complex types is to use a library of PVS theories
containing the lemmas needed to support such reasoning. This would allow the theories to
be imported only when required. Such theories need to be developed with care; we do not
guarantee the theory in figure 12 to be the best theory to support obvious reasoning about
lengths of lists. The extent to which existing libraries developed by other members of the
PVS user community would be useful in TAME is an open question.

7. Related work

An increasing number of proof assistants, including assistants for the Duration Calculus
(Skakkebaek and Shankar, 1994), for the TRIO logic (Alborghetti et al., 1997; Gargantini
and Morzenti, 2001), and for proving invariant properties of DisCo specifications
(Kellomaki, 1997), use PVS as the underlying prover. Both the Duration Calculus and
TRIO assistants support proofs using steps from particular logics, and use specialized
pretty-printers to display PVS sequents in the languages of these logics. The DisCo assistant
supports proofs of properties of DisCo specifications, using Lamport’s Temporal Logic of
Actions, with specialized PVS strategies generated by a compiler. These strategies, though
uniform in concept, are specific to each given application. A similar approach was used in an
earlier version of TAME; PVS enhancements, especially the documentation of the internal
structure of PVS sequents, have allowed us to make the TAME strategies more generic.

Several researchers have applied mechanical theorem provers to LV timed automata or
I/O automata. In addition to the application of PVS described in Devillers et al. (2000),
Luchangco (1995) describes how the Larch theorem prover LP was used to prove prop-
erties of several protocols specified as LV timed automata, and Müller (1998) describes a
verification environment for I/O automata based on Isabelle; like Devillers et al. (2000),
both include simulation proofs as well as proofs of invariants. In addition, Müller (1998)
develops a detailed metatheory for I/O automata. TAME has an advantage over Larch and
Isabelle: it produces compact, informative proof scripts. Although Larch provides detailed
proof scripts with some information on the content of a proof, Larch does not support the
matching of high level natural proof steps with user-defined strategies, nor the automatic
documentation of a proof through comments provided by TAME. While Isabelle tactics
perform some of the services of the TAME strategies (Müller, 1998), Isabelle does not save
proof scripts for completed proofs.

A toolset has been developed that provides an automatic translator from the IOA language
for I/O automata to Larch specifications and an interface to the Larch theorem prover
LP (Garland and Lynch, 1998). This toolset will eventually include a similar translator
to PVS that is being developed by Devillers and Vaandrager; a prototype now exists
(Devillers, 1999). TAME currently has a prototype translator from specifications in the
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SCR language to TAME specifications (Archer et al., 1998), and an automatic translator
from IOA specifications is planned.

8. Conclusion

Miller (1998) discusses several major problems encountered in the AAMP5 study, in which
PVS was used to prove the correctness of a set of microcode instructions. Two problems
were how to organize the specification and how to structure complex proofs. He also notes
that the learning curve in this project was very steep, that many supporting theories had to
be developed, and that the robustness of proofs became a concern when specifications were
modified.

Within its domain of application, TAME solves most of these problems. In particular, it
provides templates to organize specifications of automata, high level proof steps designed
to make proof structures more understandable, and supporting theories appropriate to the
domain. The third author’s experience with TAME supports our belief that the learning
curve for TAME is much less steep than that for the direct use of PVS. TAME proofs tend
to be fairly robust because they use high level proof steps that do not depend on details of
the sequent in the current proof goal. (By contrast, such dependence on details is present
in several places in the PVS proof in the TIP case study in Section 4.) In addition, TAME
proofs are usually easy to modify when a change in a specification requires some changes
in a proof.

Miller (1998) also notes that productivity in the AAMP5 project required the same
individuals to serve as both domain experts and PVS experts. Because TAME proofs can
be understood separately from PVS, we believe that TAME can provide a way to allow
domain experts to understand the results of a verification without becoming PVS experts,
and to communicate high-level proof outlines to PVS (or TAME) experts that can be easily
checked in TAME. This has been demonstrated to some extent by our previous experience
with TAME and by the third author’s experience with the RPC-Memory example.

Thus, we believe that specialized interfaces such as TAME can solve many of the problems
associated with introducing the use of theorem proving into industrial practice. This is
consistent with the point of view of Crow and Di Vito (1998), who state:

Applying formal methods “right out of the box” is difficult. Tailoring the methods to the
application at hand is both necessary and desirable.

As noted in Section 3, TAME is based on template specifications for given system models,
standard supporting theories, and special strategies to implement reasoning steps appropriate
to the models. By providing an appropriate automatic specification translator, a specialized
interface can also allow developers to create specifications in an environment familiar to
them. For TAME, such a translator has been developed for specifications created in the
SCR toolset (Archer et al., 1998). We believe that the methods used to create TAME can
be followed to create specialized interfaces in other application domains. In fact, similar
methods were used to some extent in the other PVS-based proof assistants discussed in
Section 7. An open question is whether specialized interfaces analogous to TAME can be
developed that will address the needs of practitioners.



226 ARCHER, HEITMEYER AND RICCOBENE

Appendix A. The I/O automaton TIP from Devillers et al. (2000)

Appendix B. TIP specified using the TAME template: The theory tip decls4

tip decls: THEORY

BEGIN
timed auto lib: LIBRARY = “../timed auto lib”
IMPORTING timed auto lib@time thy
IMPORTING timed auto lib@bool rewrites
IMPORTING timed auto lib@list rewrites
Vertices: TYPE+;
Link: TYPE=[Vertices, Vertices];
Edges: TYPE = {l:Link | NOT(proj 1(l)=proj 2(l))};
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Bool : TYPE = boolean;
BoolStar: TYPE = list[Bool];
source(e:Edges): Vertices = proj 1(e);
target(e:Edges): Vertices = proj 2(e);
reverse edge(e:Edges): Edges = (target(e), source(e));
fromv(v:Vertices): TYPE = {e:Edges | source(e)=v};
tov(v:Vertices): TYPE = {e:Edges | target(e)=v};
adj(e,f:Edges): Bool = (source(e)=target(f) & NOT(reverse edge(e)=f) );
path(e,f:Edges,n:nat): RECURSIVE Bool=

IF n=0 THEN e=f
ELSE (EXISTS (l:Edges): adj(e,l) & path(l,f,n − 1)) ENDIF

measure n

const facts: AXIOM = true;

actions: DATATYPE
BEGIN

nu(timeof:(fintime?)): nu?
add child(addE: Edges): add child?
children known(childV: Vertices): children known?
ack(ackE: Edges): ack?
resolve contention(resE: Edges): resolve contention?
root(rootV: Vertices): root?

END actions

MMTstates: TYPE = [# init: [Vertices − > Bool],
contention: [Vertices − > Bool],
root: [Vertices − > Bool],
child: [Edges − > Bool],
mq:[Edges − > BoolStar] #]

init(v:Vertices, s:states): Bool = init(basic(s))(v)
contention(v:Vertices, s:states): Bool = contention(basic(s))(v)
root(v:Vertices, s:states): Bool = root(basic(s))(v)
child(e:Edges, s:states): Bool = child(basic(s))(e)
mq(e:Edges, s:states): BoolStar = mq(basic(s))(e)

IMPORTING timed auto lib@states[actions, MMTstates, time, fintime?]

OKstate?(s:states): bool = true
enabled general (a:actions, s:states):bool =

now(s) >= first(s)(a) & now(s) <= last(s)(a);
enabled specific (a:actions, s:states):bool =

CASES a OF
nu(delta t): delta t > zero
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& FORALL (a0:actions):
NOT(nu?(a0)) => now(s) + delta t <= last(a0,s),

add child(e): init(target(e),s) & NOT(mq(e,s) = null),
children known(v): init(v,s) &

(FORALL (e:Edges)(f:tov(v)): child(e,s) OR child(f,s) OR e = f),
ack(e): NOT(init(target(e),s)) & NOT(mq(e,s) = null),
resolve contention(e): contention(source(e),s) & contention(target(e),s),
root(v): NOT(init(v,s)) & NOT(contention(v,s)) &

NOT(root(v,s)) & (FORALL (e:tov(v)): child(e,s))
ENDCASES

trans (a:actions, s:states):states =
CASES a OF

nu(delta t): s WITH [now := now(s) + delta t],
add child(e): IF NOT(mq(e,s) = null)

THEN s WITH [basic := basic(s) WITH
[child := child(basic(s)) WITH [(e) := true],
mq := mq(basic(s)) WITH [(e) := cdr(mq(e,s))]]]

ELSE s ENDIF,
children known(v): s WITH [basic := basic(s) WITH

[init := init(basic(s)) WITH [(v) := false],
mq := (LAMBDA (e:Edges):

(IF (source(e) = v)
THEN cons(child(reverse edge(e),s),mq(e,s))
ELSE mq(e,s) ENDIF ))]],

ack(e): IF NOT(mq(e,s) = null)
THEN s WITH [basic := basic(s) WITH

[contention := contention(basic(s))
WITH [(target(e)) := NOT(car(mq(e,s)))],

mq := mq(basic(s)) WITH [(e) := cdr(mq(e,s))]]]
ELSE s ENDIF,

resolve contention(e): s WITH [basic := basic(s) WITH
[child := child(basic(s)) WITH [(e) := true],
contention := contention(basic(s)) WITH

[(target(e)) := false, (source(e)) := false]]],
root(v): s WITH [basic := basic(s) WITH

[root := root(basic(s)) WITH [(v) := true]]]
ENDCASES

enabled (a:actions, s:states):bool =
enabled general(a,s) & enabled specific(a,s) & OKstate?(trans(a,s));
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start (s:states):bool =
s = (# basic := basic(s) WITH [init:= LAMBDA(v:Vertices): true,

contention:= LAMBDA(v:Vertices): false,
root:= LAMBDA(v:Vertices): false,
child:= LAMBDA(e:Edges): false,
mq:= LAMBDA(e:Edges): null],

now := zero,
first := (LAMBDA (a:actions): zero),
last := (LAMBDA (a:actions): infinity) #);

IMPORTING timed auto lib@machine[states, actions, enabled, trans, start]

END tip decls

Appendix C. Some TIP invariants from Devillers et al. (2000), and in TAME

2. If a node is in the initial stage then its outgoing links are empty.
I2(e) ≡ init[source(e)] → mq[e]=empty
Inv 2(s:states): bool =

(FORALL (e:Edges): init(source(e),s) ⇒ mq(e,s) = null);

4. If a node has left the initial stage then all links, or all links but one, are child links.
I4(e, f, v) ≡

target(e)=target( f )=v ∧ e �= f → init[v] ∨ child[e] ∨ child( f )

Inv 4(s:states): bool =
(FORALL (e,f:Edges, v:Vertices):

(target(e) = v AND target(f) = v AND NOT(e = f))
⇒ (init(v,s) OR child(e,s) OR child(f,s)));

5. Each link contains at most one message at a time.
I5(e) ≡ length(mq[e]) ≤ 1
Inv 5(s:states): bool = (FORALL (e:Edges): length(mq(e,s)) ≤ 1);

6. If a node is in the initial stage, then none of its neighbors is involved in root contention.
I6(e) ≡ init[source(e)] → ¬contention[target(e)]
Inv 6(s:states): bool =

(FORALL (e:Edges):
init(source(e),s) ⇒ NOT(contention(target(e),s)));

7. Child links are empty.
I7(e) ≡ child[e] → mq[e] = empty
Inv 7(s:states): bool =

(FORALL (e:Edges): child(e,s) ⇒ mq(e,s) = null);

8. If a node is involved in root contention, then all its incoming links are empty.
I8(e) ≡ contention[target(e)] → mq[e] = empty
Inv 8(s:states): bool =

(FORALL (e:Edges): contention(target(e),s) ⇒ mq(e,s) = null);
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15.5 There is at most one node for which all incoming links are child links.
I15 ≡ (∃v∀e ∈ to(v) : child[e]) → (∃!v∀e ∈ to(v) : child[e])
Inv 15(s:states): bool =

(EXISTS (v:Vertices): (FORALL (e:tov(v)):child(e,s))) ⇒
((EXISTS (v:Vertices): (FORALL (e:tov(v)):child(e,s)))

AND
(FORALL (v,w:Vertices):

((FORALL (e:tov(v)):child(e,s)) AND
(FORALL (e:tov(w)):child(e,s)) ⇒ v = w)))
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Notes

1. Although Imp does involve timing information, the time step action is not the global time step used in LV timed
automata. Therefore, we modeled Imp as an I/O automaton and its time step as just another I/O automaton
action.

2. In figure 2 and elsewhere, a name in bold capital letters denotes a TAME strategy.
3. GRIND fails to terminate on one of the proofs and needs to be helped by APPLY-EXTENSIONALITY in

another. These complications are probably due to a PVS bug.
4. The fixed parts of the TAME template are shown in bold.
5. We have dropped the argument v to I15.
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